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4 Conformal Mappings

4.1 Biholomorphic Mappings

De�nition 4.1. Let X be a topological space and S a set. A function

f : X → S is called locally injective at x ∈ X i� there is a neighborhood

U ⊆ X of x such that f restricted to U is injective. f is called locally injective

i� it is locally injective at each x ∈ X.

Theorem 4.2. Let D ⊆ C be a region, f ∈ O(D), a ∈ D and p := f(a).
Suppose that f − p has a zero of order m at a. Then there exist ε > 0 and

δ > 0 with Bδ(a) ⊂ D such that for q ∈ Bε(p) \ {p} the function f − q has

exactly m distinct simple zeros for z ∈ Bδ(a) and f − p has no further zeros

in z ∈ Bδ(a).

Proof. Since f is not constant (otherwise f −p could not have a zero of �nite

order according to Proposition 3.2), neither f − p nor f ′ are constant zero.

So the zeros of both f − p and f ′ are isolated. This implies that we can

�nd δ > 0 with Bδ(a) ⊂ D such that f(z) − p 6= 0 and f ′(z) 6= 0 for all

z ∈ Bδ(a) \ {a}. Now set ε := minζ∈∂Bδ(a){|f(ζ) − p|}. Then, if q ∈ Bε(p),

|(f(ζ) − p) − (f(ζ) − q)| < ε ≤ |f(ζ) − p| ∀ζ ∈ ∂Bδ(a).

So, by Rouché's Theorem (Theorem 3.21), f − p and f − q must have the

same numbers of zeros, counted with multiplicity, in Bδ(a), namely m. If

q 6= p these are all simple by Proposition 3.2 because f ′(z) 6= 0 for z ∈
Bδ(a) \ {a}.

Proposition 4.3. Let D ⊆ C be a region and f ∈ O(D). Then, f is locally

injective at a ∈ D i� f ′(a) 6= 0. Moreover, f is locally injective in D i� f ′

is nowhere zero in D.

Proof. Let a ∈ D and p := f(a). Suppose �rst that f ′(a) = 0. Then, either
f is constant or f − p has a zero of order m ≥ 2 at a. In the �rst case

the lack of local injectivity is trivial. In the second case consider an open

neighborhood U ⊆ D of a. Applying Theorem 4.2, there exists ε > 0 such

that for q ∈ Bε(p) \ {p} the equation f(z) = q has at least two distinct

solutions for z ∈ U . In particular, f is not injective in U . Since U was

arbitrary, f is not locally injective at a.
Now suppose f ′(a) 6= 0. Then, f − p has a simple zero at a. Applying

Theorem 4.2, there exist ε > 0 and δ > 0 with Bδ(a) ⊂ D such that for

all q ∈ Bε(p) the equation f(z) = q has exactly one solution in Bδ(a). By

continuity of f , U := f−1(Bε(p)) ∩ Bδ(a) is an open neighborhood of a.
Clearly, f is injective in U , showing that f is locally injective at a.
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Recalling Section 1.3 we see that the concept of conformality is equivalent

to holomorphicity combined with local injectivity.

De�nition 4.4. Let D, D′ ⊆ C be regions. A map f : D → C with f(D) =
D′ is called a biholomorphic map from D to D′ i� f is holomorphic and has

a holomorphic inverse f−1 : D′ → C. If such a map exists, D and D′ are
said to be conformally equivalent.

Theorem 4.5. Let D ⊆ C be a region and f ∈ O(D). Then, f is a biholo-

morphic mapping from D to f(D) i� f is injective.

Proof. Clearly, biholomorphicity implies injectivity. For the converse assume

that f is injective. By continuity, the image D′ := f(D) is connected.

Moreover, by the Open Mapping Theorem (Theorem 2.40), D′ is open. So

D′ is a region as it cannot be empty. Since f is injective, the inverse map

f−1 : D′ → D exists. Again using the Open Mapping Theorem, f−1 is

continuous. Moreover, by Proposition 4.3 f ′ is nowhere zero. Applying

Proposition 1.7 we conclude that f−1 is everywhere complex di�erentiable,

i.e., it is holomorphic.

In the following H := {z ∈ C : =(z) > 0} denotes the upper half-plane in

C.

Exercise 43. Show that z 7→ −z2 restricted to H is a biholomorphic map-

ping. Onto which region?

4.2 Conformal Automorphisms of C and C×

De�nition 4.6. Let D ⊆ C be a region. A biholomorphic mapping from

D to D is called a conformal automorphism of D. The group of conformal

automorphisms of D is denoted Aut(D).

As a �rst example we consider conformal automorphisms of C. The

following ones are obvious:

1. Ta : z 7→ z + a where a ∈ C is the translation by a.

2. Rθ : z 7→ eiθz where θ ∈ [0, 2π) is the rotation by the angle θ around

the origin in positive direction.

3. Sr : z 7→ rz where r ∈ R+ is the scaling by the factor r around the

origin.
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Exercise 44. Show that the group generated by translations, rotations and

scalings of C consists precisely of the biholomorphic transformations C → C
of the form

z 7→ az + b with a ∈ C \ {0}, b ∈ C.

As we shall see soon there are in fact no further automorphisms of C. An-
other interesting example is the punctured plane C× := C \ {0}. In addition

to the rotations and scalings already seen above, there is another elementary

automorphism of C× given by

I : z 7→ 1
z
, called inversion.

We shall see that there are no further automorphisms of C× than those

generated by rotations, scalings and inversions.

Lemma 4.7. Let D ⊆ C be a region, a ∈ D and f ∈ O(D\{a}) be injective.

Then, either a is a pole of order one or it is a removable singularity and the

continuation of f to D is injective.

Proof. Suppose that a is a removable singularity and denote the continuation

of f by f̃ ∈ O(D). Assume that f̃ is not injective. Since f is injective this

means there exists z ∈ D \ {a} such that f̃(a) = f̃(z). Choose r > 0 such

that r < |z − a|/2 and Br(a) ⊆ D and Br(z) ⊆ D. By the Open Mapping

Theorem (Theorem 2.40) f̃(Br(z)) and f̃(Br(a)) are open and so is their

intersection U := f̃(Br(z)) ∩ f̃(Br(a)). But by assumption U is not empty

as it contains f(a). Since U is open there exists p ∈ U with p 6= f(a). Then
there must exist z1 ∈ Br(a)\{a} and z2 ∈ Br(z) such that f(z1) = p = f(z2)
contradicting the injectivity of f . Thus, f̃ must be injective.

Suppose now that a is not a removable singularity. Let r > 0 such that

Br(a) ⊂ D and de�ne D′ := D \ Br(a). By the Open Mapping Theorem

(Theorem 2.40) the sets f(D′) and f(Br(a) \ {a}) are both open and non-

empty, but their intersection is empty by injectivity. Thus, f(Br(a) \ {a})
cannot be dense in C. By the Casorati-Weierstrass Theorem (Theorem 3.10)

this implies that a is not an essential singularity. Hence, it must be a pole.

This implies that there is s > 0 such that Bs(a) ⊆ D and f(z) 6= 0 for all

z ∈ Bs(a) \ {a}. De�ne g ∈ O(Bs(a) \ {a}) by g(z) := 1/f(z). Note that g
is injective since f is. Also, a is a pole of f , so a is a removable singularity

of g. This implies by the above part of the proof that the continuation

g ∈ O(Bs(a)) is still injective. In particular, g is locally injective at a, so
Proposition 4.3 implies that g′(a) 6= 0. On the other hand g(a) = 0, so a is

a zero of order one of g, implying that it is a pole of order one of f .
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Theorem 4.8. Every injective holomorphic function f : C → C is an auto-

morphism of C and can be written in the form

z 7→ az + b for some a ∈ C×, b ∈ C.

Proof. Let

f(z) =
∞∑

n=0

cnzn

be the power series expansion of f . De�ne the function g ∈ O(C×) by

g(z) := f(1/z). Then, g is injective and has the Laurent series expansion

g(z) =
∞∑

n=0

cnz−n

in A0,∞(0). By Lemma 4.7, 0 is either a removable singularity of g or a

pole of order one. This implies cn = 0 for all n ≥ 2 by Proposition 3.17.

By injectivity c1 6= 0, so f has the stated form and is an automorphism of

C.

Corollary 4.9. C is not conformally equivalent to any proper subset.

Theorem 4.10. Every injective holomorphic mapping f : C× → C× is an

automorphism of C× and takes either the form

z 7→ az or z 7→ a

z
for some a ∈ C×.

Proof. According to Lemma 4.7, 0 can either be a removable singularity of f
or a pole of order one. In the �rst case, the continuation f̃ ∈ O(C) is injective
by the same Lemma. Thus, f̃ is automorphism of C and f̃(z) = az + b for

some a ∈ C× and b ∈ C by Theorem 4.8. But must have f̃−1({0}) 6= ∅ while

f−1({0}) = ∅, implying f̃(0) = 0. Thus, b = 0. In the second case de�ne

the injective holomorphic function g : C× → C× by g(z) := 1/f(z). Since

f has a pole at 0, g has a removable singularity at 0. So we can apply the

�rst part of the proof to g showing that g(z) = ãz for some ã ∈ C×. Setting
a := 1/ã we �nd f(z) = a/z, completing the proof.

Exercise 45. Show that C× is conformally equivalent to C \ {p} for any

p ∈ C, but not to any other subset of C.
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4.3 Conformal Automorphisms of D

We now consider the conformal automorphisms of the open unit disk D :=
B1(0). Among the transformations we have seen so far, the rotation by an

angle θ around the origin is obviously an automorphism of D. A less obvious

automorphism is given by

Dw : z 7→ z − w

wz − 1
, where w ∈ D.

Exercise 46. Verify the following properties of the transformation Dw: (a)

it is an automorphism of D, (b) it is self-inverse, i.e., composing the trans-

formation with itself yields the identity on D, (c) it interchanges the points
0 and w.

We shall see that the group generated by rotations Rθ and by transfor-

mations Dw is already the full automorphism group of D.

Lemma 4.11 (Schwarz Lemma). Let f : D → D be a holomorphic function

such that f(0) = 0. Then,

|f(z)| ≤ |z| ∀z ∈ D and |f ′(0)| ≤ 1.

Moreover, if |f(z)| = |z| for some z ∈ D \ {0} or if |f ′(0)| = 1, then there is

a ∈ C with |a| = 1 such that f(z) = az for all z ∈ D.

Proof. Since f has a zero at 0, there is g ∈ O(D) such that f(z) = zg(z)
and moreover, f ′(0) = g(0). Since |f(z)| < 1 for all z ∈ D, we have for any
0 < r < 1,

‖g‖∂Br(0) <
1
r
.

On the other hand, applying Proposition 2.34 to Br(0) we have

|g(z)| ≤ ‖g‖∂Br(0) <
1
r

∀z ∈ Br(0).

Since r can be chosen arbitrarily close to 1, we get, for all z ∈ D, |g(z)| ≤ 1.
This translates to the �rst stated inequality if z 6= 0 and to the second stated

inequality if z = 0. If either |f(z)| = |z| for some z ∈ D\{0} or if |f ′(0)| = 1,
then |g(z)| = 1 for some z ∈ D. Then, by Theorem 2.33, g is constant, i.e,

there is a ∈ C such that g(z) = a for all z ∈ D. Consequently, f(z) = az.
Observe also that |a| = 1.

Proposition 4.12. Let f : D → D be biholomorphic and f(0) = 0. Then, f
is a rotation, i.e., there exists θ ∈ [0, 2π) such that f = Rθ.
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Proof. Applying Lemma 4.11 to both f and f−1 yields,

|f(z)| ≤ |z| and |f−1(z)| ≤ |z| ∀z ∈ D.

Replacing z by f(z) in the second inequality yields, |z| ≤ |f(z)| for all z ∈ D.
Thus, we actually �nd |f(z)| = |z| for all z ∈ D. By Lemma 4.11 this implies

that there exists a ∈ C with |a| = 1 and f(z) = az, i.e., f is a rotation.

Theorem 4.13. The group of automorphisms of D is generated by rotations

Rθ and transformations Dw. In particular, any automorphism of D can be

written uniquely as a composition Rθ ◦ Dw for some θ ∈ [0, 2π) and some

w ∈ C.

Proof. Let f ∈ Aut(D). Set w := f−1(0) and de�ne g := f ◦ Dw. Then

g ∈ Aut(D) with the property that g(0) = 0. Applying Proposition 4.12 to g
yields that g is a rotation. That is, there exists θ ∈ [0, 2π) such that g = Rθ.

Then, f = Rθ ◦Dw, since Dw ◦Dw = id. To see uniqueness suppose that also
f = Rθ′ ◦ Dw′ . Then f−1(0) = (Rθ′ ◦ Dw′)−1(0) = D−1

w′ (0) = w′, so w′ = w.
But composing with Dw yields then Rθ′ = Rθ which implies θ′ = θ.

Exercise 47. Show that the set of automorphisms of D is identical to the

set of transformations D → D of the form

z 7→ xz + y

yz + x
with x, y ∈ C and |x| > |y|.

Exercise 48. Let f : D → D be holomorphic and a ∈ D such that f(a) = 0.
Show that

|f(z)| ≤ |z − a|
|az − 1|

∀z ∈ D.

Moreover, in case of equality for some z ∈ D \ {a}, f is automorphism of D.

4.4 Möbius Transformations

It turns out that all the biholomorphic transformations we have considered

so far can be written as rational maps that arise as quotients of polynomials

of degree one. It turns out that maps of this type are always biholomorphic

and permit the understanding of a variety of conformal equivalences and

automorphism groups.

To each complex matrix

A =
(

a b
c d

)
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with c 6= 0 or d 6= 0 we associate the rational function MA ∈ M(C) given by

MA(z) :=
az + b

cz + d
.

Since

M ′
A(z) =

det A

(cz + d)2

we see that MA is constant if det A = 0. In the following we shall restrict to

the case det A 6= 0. MA is then called a Möbius transformation or fractional

linear transformation. We denote the set of these meromorphic functions by

Möb. Recall that GL2(C), the group of general linear transformations in

C2, is the group of complex 2 × 2-matrices with non-zero determinant.

Proposition 4.14. The set of Möbius transformations Möb forms a group

by composition. Moreover, the map GL2(C) →Möb given by A 7→ MA is a

group homomorphism, i.e., we have

MAB = MA ◦ MB ∀A,B ∈ GL2(C).

Proof. Exercise.

Exercise 49. Verify that the upper triangular matrices (with non-vanishing

determinant) form a subgroup of GL2(C). Show that the image of this

subgroup under the map GL2(C) → Möb is the group Aut(C). Identify

the upper triangular matrices corresponding to translations, rotations and

re�ections.

Exercise 50. Verify that the other Möbius transformations also de�ne bi-

holomorphic mappings. Between which regions?

Recall that GL+
2 (R) is the group of orientation-preserving general linear

transformations of R2, i.e., these are 2 × 2-matrices with real entries and

positive determinant.

Proposition 4.15. The restriction of the map GL2(C) →Möb to the sub-

group GL+
2 (R) yields Möbius transformations that are conformal automor-

phisms of H. That is, we obtain a group homomorphism GL+
2 (R) → Aut(H).

Proof. Exercise.

Proposition 4.16. Let D, D′ ⊆ C be regions such that D and D′ are confor-

mally equivalent. Then Aut(D) and Aut(D′) are isomorphic. In particular,

every biholomorphic mapping D → D′ yields such an isomorphism.
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Proof. Let f : D → D′ be a biholomorphic mapping. Then, an isomorphism

Aut(D) → Aut(D′) is given by g 7→ f ◦ g ◦ f−1.

Exercise 51. Show that the Cayley map MC ∈ M(C) given by

C :=
(

1 −i
1 i

)
is a biholomorphic map from H to D.

Proposition 4.17. Consider the group homomorphism GL+(R) → Aut(D)
given by A 7→ MC ◦ MA ◦ M−1

C induced by the Cayley map MC : H → D.

This group homomorphism is surjective, i.e., every automorphism of D can

be obtained in this way.

Proof. If C is the matrix of Exercise 51, then C−1 = 1
2

(
1 1
i −i

)
and M−1

C =

MC−1 . It is easy to verify by matrix multiplication that for A =
(

a b
c d

)
the

indicated group homomorphism yields the automorphism D → D given by

z 7→ xz + y

yz + x
,

where x := a+d+ib−ic and y := a−d−ib−ic. If a, b, c, d were arbitrary real

numbers, x, y would be arbitrary complex numbers. It is easy to verify that

|x|2−|y|2 = 4 det A. Thus, the condition det A > 0 on (a, b, c, d) corresponds
precisely to the condition |x| > |y| on (x, y). Recalling Exercise 47, we

recognize that we obtain all automorphisms of D.

Exercise 52. Let A,B ∈ GL2(C). Show that MA = MB i� there exists

λ ∈ C \ {0} such that B = λA.

PGL2(C) is the group of projective general linear transformations of C2.

It is the quotient GL2(C)/C∗, where C∗ is the subgroup of GL2(C) given by

non-zero complex multiples of the unit matrix.

Exercise 53. Show that PGL2(C) is isomorphic to SL2(C)/Z2, where Z2 is

the subgroup of SL2(C) consisting of {1,−1}.

Proposition 4.18. PGL2(C) ≈Möb.

PGL+
2 (R) is the group of projective orientation-preserving general lin-

ear transformations of R2. It is the quotient GL+
2 (R)/R∗, where R∗ is the

subgroup of GL+
2 (R) given by non-zero real multiples of the unit matrix.
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Exercise 54. Show that PGL+
2 (R) is isomorphic to SL2(R)/Z2, where Z2

is the subgroup of SL2(R) consisting of {1,−1}.

Proposition 4.19. PGL+
2 (R) ≈ Aut(H) ≈ Aut(D).

4.5 Holomorphic Logarithms and Roots

De�nition 4.20. A region D ⊆ C is called homologically simply connected

i� all holomorphic functions in D are integrable.

Remark 4.21. Theorem 2.43 together with Proposition 2.11 imply that

all holomorphic functions are integrable in a region D ⊆ C i� every closed

path γ in D satis�es Intγ ⊂ D. So this provides an alternative de�nition

of homologically simple connectedness. In fact it turns out that the ad-

jective �homologically� is super�uous as the notion is equivalent to simple

connectedness. However, we will not prove this here.

De�nition 4.22. Let D ⊆ C be a region and f ∈ O(D). Then, g ∈ O(D)
is called a holomorphic logarithm of f i� f = exp g.

Theorem 4.23. Let D ⊆ C be a homologically simply connected region and

f ∈ O(D) zero-free. Then, there exists a holomorphic logarithm of f in D.

Proof. By the assumptions f ′/f ∈ O(D) and integrable. Let h ∈ O(D) be

a primitive. De�ne k := f exp(−h) ∈ O(D). As is easy to check, k′ = 0 so

k = c for all z ∈ D for some constant c ∈ C. This implies f = c exph and

c 6= 0 since f is zero-free. Since exp takes all complex values except zero,

there is b ∈ C with c = exp(b). Then, g := h + b ∈ O(D) is the looked for

holomorphic logarithm with f = exp g.

De�nition 4.24. Let D ⊆ C be a region, f ∈ O(D) and n ∈ N. Then, a

(holomorphic) nth root of f is a function g ∈ O(D) such that f = gn.

Theorem 4.25. Let D ⊆ C be a homologically simply connected region and

f ∈ O(D) zero-free. Then, there exists an nth root of f for every n ∈ N.

Proof. According to Theorem 4.23 there is a holomorphic logarithm g ∈
O(D) of f . An nth root of f is given by

z 7→ exp
(

1
n

g

)
∀z ∈ D.
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Exercise 55. Let D, D′ ⊆ C be homologically simply connected regions.

Suppose that D′′ := D ∩ D′ is connected and non-empty. Show that D′′ is
homologically simply connected.

Exercise 56. Let D ⊆ C be a region, f ∈ O(D) such that f is not constant.

Let a ∈ D. Show the equivalence of the following statements:

1. There exists a neighborhood U ⊆ D of a such that f has a holomorphic

square-root in U .

2. f(a) 6= 0 or f(a) = 0 and the order of the zero is even.

Exercise 57. Let D ⊆ C be a region, f ∈ O(D) such that f is not constant.

Show that for any a ∈ D there exists a neighborhood U ⊆ D of a such

that there is m ∈ N and g ∈ O(U) biholomorphic with the property f(z) =
f(a) + (g(z))m for all z ∈ U .


